Quantum Foundations
   HOME

TheInfoList



OR:

Quantum foundations is a discipline of science that seeks to understand the most counter-intuitive aspects of
quantum theory Quantum theory may refer to: Science *Quantum mechanics, a major field of physics *Old quantum theory, predating modern quantum mechanics * Quantum field theory, an area of quantum mechanics that includes: ** Quantum electrodynamics ** Quantum ...
, reformulate it and even propose new
generalization A generalization is a form of abstraction whereby common properties of specific instances are formulated as general concepts or claims. Generalizations posit the existence of a domain or set of elements, as well as one or more common characteri ...
s thereof. Contrary to other physical theories, such as
general relativity General relativity, also known as the general theory of relativity and Einstein's theory of gravity, is the geometric theory of gravitation published by Albert Einstein in 1915 and is the current description of gravitation in modern physics ...
, the defining
axiom An axiom, postulate, or assumption is a statement that is taken to be true, to serve as a premise or starting point for further reasoning and arguments. The word comes from the Ancient Greek word (), meaning 'that which is thought worthy or f ...
s of quantum theory are quite
ad hoc Ad hoc is a Latin phrase meaning literally 'to this'. In English, it typically signifies a solution for a specific purpose, problem, or task rather than a generalized solution adaptable to collateral instances. (Compare with ''a priori''.) Com ...
, with no obvious physical intuition. While they lead to the right experimental predictions, they do not come with a mental picture of the world where they fit. There exist different approaches to resolve this conceptual gap: * First, one can put quantum physics in contraposition with classical physics: by identifying scenarios, such as Bell experiments, where quantum theory radically deviates from classical predictions, one hopes to gain physical insights on the structure of quantum physics. * Second, one can attempt to find a re-derivation of the quantum formalism in terms of operational axioms. * Third, one can search for a full correspondence between the mathematical elements of the quantum framework and physical phenomena: any such correspondence is called an interpretation. * Fourth, one can renounce quantum theory altogether and propose a different model of the world. Research in quantum foundations is structured along these roads.


Non-classical features of quantum theory


Quantum nonlocality

Two or more separate parties conducting measurements over a quantum state can observe correlations which cannot be explained with any
local hidden variable theory Local may refer to: Geography and transportation * Local (train), a train serving local traffic demand * Local, Missouri, a community in the United States * Local government, a form of public administration, usually the lowest tier of administrat ...
. Whether this should be regarded as proving that the physical world itself is "nonlocal" is a topic of debate, but the terminology of "quantum nonlocality" is commonplace. Nonlocality research efforts in quantum foundations focus on determining the exact limits that classical or quantum physics enforces on the correlations observed in a Bell experiment or more complex causal scenarios. This research program has so far provided a generalization of Bell's theorem that allows falsifying all classical theories with a superluminal, yet finite, hidden influence.


Quantum contextuality

Nonlocality can be understood as an instance of
quantum contextuality Quantum contextuality is a feature of the Phenomenology (physics), phenomenology of quantum mechanics whereby measurements of quantum observables cannot simply be thought of as revealing pre-existing values. Any attempt to do so in a realistic hid ...
. A situation is contextual when the value of an observable depends on the context in which it is measured (namely, on which other observables are being measured as well). The original definition of measurement contextuality can be extended to state preparations and even general physical transformations.


Epistemic models for the quantum wave-function

A physical property is epistemic when it represents our knowledge or beliefs on the value of a second, more fundamental feature. The probability of an event to occur is an example of an epistemic property. In contrast, a non-epistemic or ontic variable captures the notion of a “real” property of the system under consideration. There is an on-going debate on whether the wave-function represents the epistemic state of a yet to be discovered ontic variable or, on the contrary, it is a fundamental entity. Under some physical assumptions, the Pusey–Barrett–Rudolph (PBR) theorem demonstrates the inconsistency of quantum states as epistemic states, in the sense above. Note that, in
QBism In physics and the philosophy of physics, quantum Bayesianism is a collection of related approaches to the interpretation of quantum mechanics, of which the most prominent is QBism (pronounced "cubism"). QBism is an interpretation that takes an a ...
and
Copenhagen Copenhagen ( or .; da, København ) is the capital and most populous city of Denmark, with a proper population of around 815.000 in the last quarter of 2022; and some 1.370,000 in the urban area; and the wider Copenhagen metropolitan ar ...
-type views, quantum states are still regarded as epistemic, not with respect to some ontic variable, but to one's expectations about future experimental outcomes. The PBR theorem does not exclude such epistemic views on quantum states.


Axiomatic reconstructions

Some of the counter-intuitive aspects of quantum theory, as well as the difficulty to extend it, follow from the fact that its defining axioms lack a physical motivation. An active area of research in quantum foundations is therefore to find alternative formulations of quantum theory which rely on physically compelling principles. Those efforts come in two flavors, depending on the desired level of description of the theory: the so-called Generalized Probabilistic Theories approach and the Black boxes approach.


The framework of generalized probabilistic theories

Generalized Probabilistic Theories (GPTs) are a general framework to describe the operational features of arbitrary physical theories. Essentially, they provide a statistical description of any experiment combining state preparations, transformations and measurements. The framework of GPTs can accommodate classical and quantum physics, as well as hypothetical non-quantum physical theories which nonetheless possess quantum theory's most remarkable features, such as entanglement or teleportation. Notably, a small set of physically motivated axioms is enough to single out the GPT representation of quantum theory. L. Hardy introduced the concept of GPT in 2001, in an attempt to re-derive quantum theory from basic physical principles. Although Hardy's work was very influential (see the follow-ups below), one of his axioms was regarded as unsatisfactory: it stipulated that, of all the physical theories compatible with the rest of the axioms, one should choose the simplest one. The work of Dakic and Brukner eliminated this “axiom of simplicity” and provided a reconstruction of quantum theory based on three physical principles. This was followed by the more rigorous reconstruction of Masanes and Müller. Axioms common to these three reconstructions are: * The subspace axiom: systems which can store the same amount of information are physically equivalent. * Local tomography: to characterize the state of a composite system it is enough to conduct measurements at each part. * Reversibility: for any two extremal states .e., states which are not statistical mixtures of other states there exists a reversible physical transformation that maps one into the other. An alternative GPT reconstruction proposed by Chiribella et al. around the same time is also based on the * Purification axiom: for any state S_A of a physical system A there exists a bipartite physical system A-B and an extremal state (or purification) T_ such that S_A is the restriction of T_ to system A. In addition, any two such purifications T_, T^_ of S_A can be mapped into one another via a reversible physical transformation on system B. The use of purification to characterize quantum theory has been criticized on the grounds that it also applies in the Spekkens toy model. To the success of the GPT approach, it can be countered that all such works just recover finite dimensional quantum theory. In addition, none of the previous axioms can be experimentally falsified unless the measurement apparatuses are assumed to be tomographically complete.


Categorical quantum mechanics or process theories

Categorical Quantum Mechanics (CQM) or Process Theories are a general framework to describe physical theories, with an emphasis on processes and their compositions. It was pioneered by
Samson Abramsky Samson Abramsky (born 12 March 1953) is Professor of Computer Science at University College London. He was previously the Christopher Strachey Professor of Computing at the University of Oxford, from 2000 to 2021. He has made contributions to t ...
and
Bob Coecke Bob Coecke (born 23 July 1968) is a Belgian theoretical physicist and logician who was professor of Quantum Foundations, Logics and Structures at Oxford University until 2020, when he became Chief Scientist of Cambridge Quantum Computing, and ...
. Besides its influence in quantum foundations, most notably the use of a diagrammatic formalism, CQM also plays an important role in quantum technologies, most notably in the form of
ZX-calculus The ZX-calculus is a rigorous graphical language for reasoning about linear maps between qubits, which are represented as string diagrams called ''ZX-diagrams''. A ZX-diagram consists of a set of generators called ''spiders'' that represent speci ...
. It also has been used to model theories outside of physics, for example the DisCoCat compositional natural language meaning model.


The framework of black boxes

In the black box or device-independent framework, an experiment is regarded as a black box where the experimentalist introduces an input (the type of experiment) and obtains an output (the outcome of the experiment). Experiments conducted by two or more parties in separate labs are hence described by their statistical correlations alone. From Bell's theorem, we know that classical and quantum physics predict different sets of allowed correlations. It is expected, therefore, that far-from-quantum physical theories should predict correlations beyond the quantum set. In fact, there exist instances of theoretical non-quantum correlations which, a priori, do not seem physically implausible. The aim of device-independent reconstructions is to show that all such supra-quantum examples are precluded by a reasonable physical principle. The physical principles proposed so far include no-signalling, Non-Trivial Communication Complexity, No-Advantage for Nonlocal computation,
Information Causality Information causality is a physical principle suggested in 2009. Information Causality states that information gain that a receiver (Bob) can reach about data, previously unknown to him, from a sender (Alice), by using all his local resources and n ...
, Macroscopic Locality, and Local Orthogonality. All these principles limit the set of possible correlations in non-trivial ways. Moreover, they are all device-independent: this means that they can be falsified under the assumption that we can decide if two or more events are space-like separated. The drawback of the device-independent approach is that, even when taken together, all the afore-mentioned physical principles do not suffice to single out the set of quantum correlations. In other words: all such reconstructions are partial.


Interpretations of quantum theory

An interpretation of quantum theory is a correspondence between the elements of its mathematical formalism and physical phenomena. For instance, in the
pilot wave theory In theoretical physics, the pilot wave theory, also known as Bohmian mechanics, was the first known example of a hidden-variable theory, presented by Louis de Broglie in 1927. Its more modern version, the de Broglie–Bohm theory, interprets quan ...
, the
quantum wave function A wave function in quantum physics is a mathematical description of the quantum state of an isolated quantum system. The wave function is a complex number, complex-valued probability amplitude, and the probabilities for the possible results of ...
is interpreted as a field that guides the particle trajectory and evolves with it via a system of coupled differential equations. Most interpretations of quantum theory stem from the desire to solve the
quantum measurement problem In quantum physics, a measurement is the testing or manipulation of a physical system to yield a numerical result. The predictions that quantum physics makes are in general probabilistic. The mathematical tools for making predictions about what m ...
.


Extensions of quantum theory

In an attempt to reconcile quantum and classical physics, or to identify non-classical models with a dynamical causal structure, some modifications of quantum theory have been proposed.


Collapse models

Collapse models posit the existence of natural processes which periodically localize the wave-function. Such theories provide an explanation to the nonexistence of superpositions of macroscopic objects, at the cost of abandoning
unitarity In quantum physics, unitarity is the condition that the time evolution of a quantum state according to the Schrödinger equation is mathematically represented by a unitary operator. This is typically taken as an axiom or basic postulate of quant ...
and exact
energy conservation Energy conservation is the effort to reduce wasteful energy consumption by using fewer energy services. This can be done by using energy more effectively (using less energy for continuous service) or changing one's behavior to use less service (f ...
.


Quantum measure theory

In Sorkin's quantum measure theory (QMT), physical systems are not modeled via unitary rays and Hermitian operators, but through a single matrix-like object, the decoherence functional. The entries of the decoherence functional determine the feasibility to experimentally discriminate between two or more different sets of classical histories, as well as the probabilities of each experimental outcome. In some models of QMT the decoherence functional is further constrained to be positive semidefinite (strong positivity). Even under the assumption of strong positivity, there exist models of QMT which generate stronger-than-quantum Bell correlations.


Acausal quantum processes

The formalism of process matrices starts from the observation that, given the structure of quantum states, the set of feasible quantum operations follows from positivity considerations. Namely, for any linear map from states to probabilities one can find a physical system where this map corresponds to a physical measurement. Likewise, any linear transformation that maps composite states to states corresponds to a valid operation in some physical system. In view of this trend, it is reasonable to postulate that any high-order map from quantum instruments (namely, measurement processes) to probabilities should also be physically realizable. Any such map is termed a process matrix. As shown by Oreshkov et al., some process matrices describe situations where the notion of global causality breaks. The starting point of this claim is the following mental experiment: two parties,
Alice and Bob Alice and Bob are fictional characters commonly used as placeholders in discussions about cryptographic systems and protocols, and in other science and engineering literature where there are several participants in a thought experiment. The A ...
, enter a building and end up in separate rooms. The rooms have ingoing and outgoing channels from which a quantum system periodically enters and leaves the room. While those systems are in the lab, Alice and Bob are able to interact with them in any way; in particular, they can measure some of their properties. Since Alice and Bob's interactions can be modeled by quantum instruments, the statistics they observe when they apply one instrument or another are given by a process matrix. As it turns out, there exist process matrices which would guarantee that the measurement statistics collected by Alice and Bob is incompatible with Alice interacting with her system at the same time, before or after Bob, or any convex combination of these three situations. Such processes are called acausal.


See also

*
Action at a distance In physics, action at a distance is the concept that an object can be affected without being physically touched (as in mechanical contact) by another object. That is, it is the non-local interaction of objects that are separated in space. Non-c ...
*
Philosophy of physics In philosophy, philosophy of physics deals with conceptual and interpretational issues in modern physics, many of which overlap with research done by certain kinds of theoretical physicists. Philosophy of physics can be broadly divided into thr ...
*
Quantum computing Quantum computing is a type of computation whose operations can harness the phenomena of quantum mechanics, such as superposition, interference, and entanglement. Devices that perform quantum computations are known as quantum computers. Though ...
*
Stern–Gerlach experiment The Stern–Gerlach experiment demonstrated that the spatial orientation of angular momentum is quantized. Thus an atomic-scale system was shown to have intrinsically quantum properties. In the original experiment, silver atoms were sent throug ...
*
Kochen–Specker theorem In quantum mechanics, the Kochen–Specker (KS) theorem, also known as the Bell–Kochen–Specker theorem, is a "no-go" theorem proved by John S. Bell in 1966 and by Simon B. Kochen and Ernst Specker in 1967. It places certain constraints on th ...


References

{{Quantum mechanics topics Quantum mechanics Philosophy of physics